RANDOM COMPLEXES AND ℓ2-BETTI NUMBERS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Complexes and l 2 - Betti Numbers

Uniform spanning trees on finite graphs and their analogues on infinite graphs are a well-studied area. On a Cayley graph of a group, we show that they are related to the first l-Betti number of the group. Our main aim, however, is to present the basic elements of a higher-dimensional analogue on finite and infinite CW-complexes, which relate to the higher l-Betti numbers. One consequence is a ...

متن کامل

Persistent Betti numbers of random Čech complexes

We study the persistent homology of random Čech complexes. Generalizing a method of Penrose for studying random geometric graphs, we first describe an appropriate theoretical framework in which we can state and address our main questions. Then we define the kth persistent Betti number of a random Čech complex and determine its asymptotic order in the subcritical regime. This extends a result of...

متن کامل

Integrality of L2-Betti numbers

The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We establish the Atiyah conjecture, under the condition that it holds for G and that H G is a normal subgroup, for amalgamated free products G ∗H (H ⋊ F ). Here F is a free group and H ⋊ F is an arbitrary semi-direct product. This includes free products G∗F and semi-...

متن کامل

L2-betti Numbers of Discrete Measured Groupoids

There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II 1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition...

متن کامل

Betti numbers of random manifolds

We study mathematical expectations of Betti numbers of configuration spaces of planar linkages, viewing the lengths of the bars of the linkage as random variables. Our main result gives an explicit asymptotic formulae for these mathematical expectations for two distinct probability measures describing the statistics of the length vectors when the number of links tends to infinity. In the proof ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology and Analysis

سال: 2009

ISSN: 1793-5253,1793-7167

DOI: 10.1142/s1793525309000072